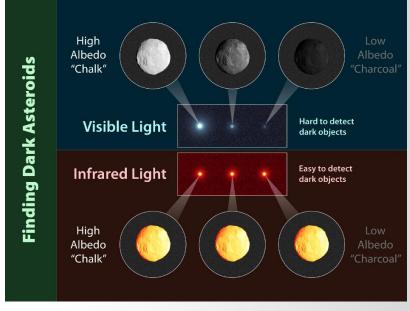
Characterizing Infrared (IR) Sensor for Hypervelocity Asteroid Intercept Vehicle (HAIV)

Dec14-12

Client - Dr. Bong Wie Advisor - Dr. Meng Lu

Leader - Sean Nichols Webmaster - Yishu Mei Communication Master - Chi Hoe How

Purpose

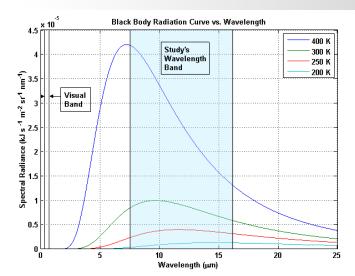

Background : Client's team has developed asteroid simulations

Problem : The feasibility of such a system was unknown

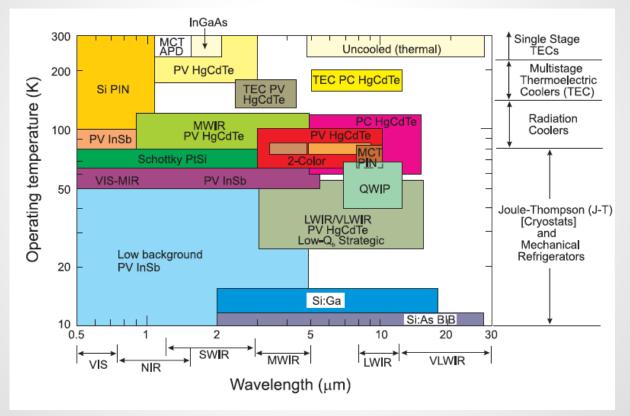
- IR technologies
- IR optics
- Distance of detection

Solution : We are employed to:

- Research technologies
- Design such a system
- Perform cost analysis



Source: nasa.gov

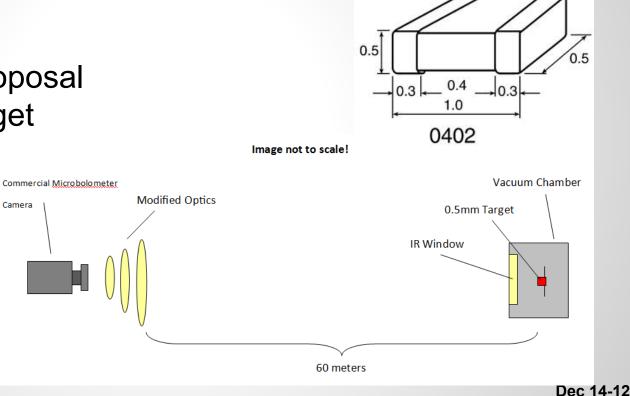

Initial Meetings

Early meetings with client

- Asteroid Parameters
 - Size (~ 50 m)
 - IR emission (~ 8 to 14 um)
- HAIV Parameters
 - Speed of approach (~10 km/s)
 - Time of detection (1 hour)
- Sensor types
 - Photon detector (cooling, high resolution, high speed, expensive)
 - Thermal detector (uncooled, lower resolution, slow speed, lower price)

Sensor Types

Dec14-12


Initial Plan

Our initial idea

Experiment Proposal

Camera

- Not within budget
- Hard to do •

Next Plan

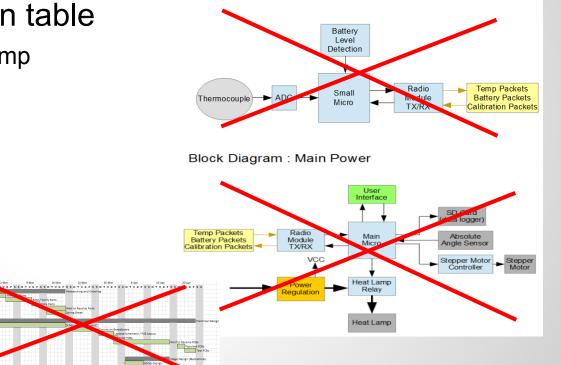
Our next plan - the turn table

Heat Lamp (variable position)

SNTYRES

Order Part

hematic / POB Layout routs on Breadboard hematic / POB Layout Order POBs Wait to Receive POBs Populate POBs Tast POIs


Design (Major Cor

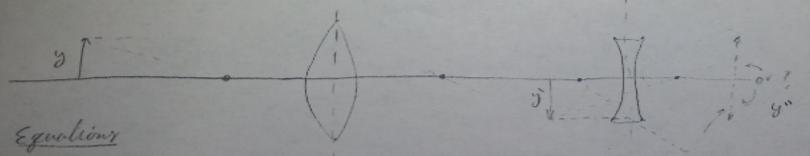
- Heat object to specific temp
- Thermal distributions
- Differing light angles
- Disagreement

Meteorite

IR Camera

Block Diagram : Battery Power

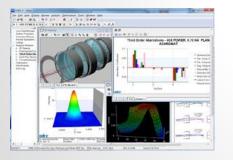
New Plan

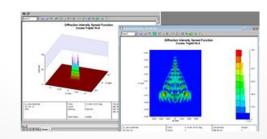

Design an optics system

- IR telescope design
- Simulations
- Differing parameters
 - Thermal Camera
 - Photon Camera
- Cost analysis
 - IR lenses / mirrors
 - Camera
 - Cooling

New Plan - System Design

Galilean Telescope Design


- Initial Exploration
- Non inverted image
- Large magnification
 - Low field of view
 - Lower brightness



Testing Design

CodeV Design Software

- Plan to obtain student license
- Can model, analyze, optimize designs
- Scalability using radiance and irradiance

Images from http://optics.synopsys.com/codev/

Scalability

Radiance

$$L = \int_{\lambda_1}^{\lambda_2} \in \frac{2hc^2}{\lambda^5} \frac{1}{e^{\frac{hc}{k_BT\lambda} - 1}} d\lambda$$

Irradiance

 $E = L\Omega$

Solid Angle

$$\Omega = \pi \frac{r^2}{d^2}$$

$$E = L\Omega \implies E = L\pi \frac{r^2}{d^2}$$

Set equal

$$E_{Lab} = E_{Real}$$

$$L\pi \frac{r_{Lab}^{2}}{d_{Lab}^{2}} = L\pi \frac{r_{Real}^{2}}{d_{Real}^{2}}$$

$$\frac{r_{Lab}}{d_{Lab}} = \frac{r_{Real}}{d_{Real}}$$

Example

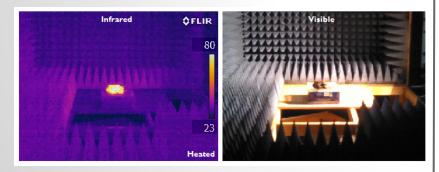
$$d_{Real}=r_{Real}\frac{d_{Lab}}{r_{Lab}}=50m\frac{72in}{2in}=1800\ m$$

Camera Characterization

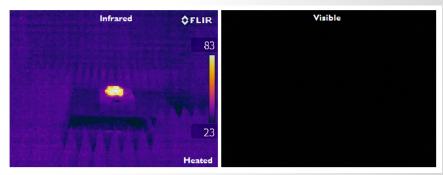
FLIR E30 (Forward Looking Infrared)

- Bolometer Resolution : 120x160
- Output Format : Radiometric JPEG
- Visible and IR cameras

Meteorite


- Weight : approx 5 lbs.
- Composition : Mostly iron
- Diameter : approx 5 inches

Dec14-12


Camera Characterization

Preliminary Thermal Measurements

Heated sample and took images
 proof of concept.

• Heated with light source

• Heated with no light source

Obtaining Thermal Info

Thermal distribution

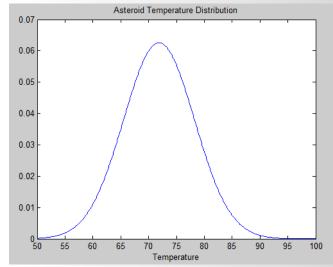
Software Used : MATLAB, FLIR Tools

- MATLAB
 - Edge detection
 - localized
 - finds all values within edge
 - Distribution calculations
 - Interpolated temperature from pixel values (no longer needed)


• FLIR Tools

• Bolometer output (.csv)

Dec14-12 Dec 14-12


Obtaining Thermal Info

Flir Tools

Ar1	Measurements			°C
1116	Ar1	Max	87.2	
and the second second				

MATLAB

Max Temp: 80 C

Future Work

- Continue galilean telescope
- Explore other telescope designs
- Bolometer noise considerations
 - Phonon Noise
 - Photon Noise
 - Johnson Noise

Questions

